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ABSTRACT

This paper concerns the use of minimax and approximation techniques from

the calculus of variations to prove the existence of periodic solutions of

Haxniltonian systems of ordinary differential equations. Most of the results

are for equations where the period is prescribed and assumptions are made about

the growth of the Hami].tonian near infinity . However it is also shown how such

results can give information about solutions having prescribed energy.
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SIGNIFICANCE AND EXP LANATION

Hamilton ’s Principle gives a classical variational characterization of

a solution of Hamilton ’s equations as a critical point of an appropriate

functional. We develop a method here which is spiritually related to this 
—

principle and which can be used to prove the existence of periodic solutions

to Hamilton ’s equations.
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A VARIATIONAL METHOD FOR FINDING PERIODIC SOLUTIONS

OF DIFFERENTIAL EQUATIONS

Paul H. Rabinowitz ~
. 

-

~l. Introduction

Our goal here is to describe a method for finding peri-

odic solutions of ordinary and partial differential equa-

tions. t.~ re accurately it is a Drocedure for finding criti-

cal points of indefinite functionals. Rather than give an
abstract formulation of this method , we nrefer to illustrate
it in a more concrete setting. Accordingly some apolications

• will be stated followed by theii det.ailed treatment by means

of our procedure.
We will mainly stay in the setting of Hamiltonian sys-

tems of ordinary differential equations. Thus consider such

a system :

(1.1) P m _ H
q ,

~~
I _ H p

where p, q E , H — H(p q) :R2~ ... R and . denotes
d/dt. Equivalently (1.1) can be written as

(1.2) 9115

where z (D ,q) c and 9 — (~ ~~J , I denoting the
identity matrix in R5 .

Our first result concerns the existence of periodic so-

lutions of (1.2) on a prescribed energy surface:

Sponsored by the United States Army under Contract No. D~.AG29-75-C-OO24
and by the Office of Naval Research under Contract No. N000l4-76-C-0300.
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Theorem 1.3: If H c C’~~R2
~ .E) and satisfies

(111) H~ 0 0 on

(112) H~~(1) is radially diffeomorphic to S2~~
1 , i.e. the

mapping 2 -~~~- - , 11 1(l) . s2 ’• 1 is a diffeomorohism,
I —1then (1.2) possesses a periodic solution on H (1).

Observe that the period of this solution is a priori Un-
known and indeed determining it is one of the main difficul-

ties to be overcome in the course of the proof of Theorem

1.3. An interesting open question under the hypotheses of
Theorem 1.3 is whether better lower bounds for the number of

geometrically distinct solutions can be qiven . For the spe-
cial case of 11(z) a positive definite quadratic form plus
hiqher order terms, it has been shown by Weinstein 11) that
for each small b, (1.2) has at least n distinct periodic
orbits on H~~ (b). It is temutinq to conjecture that the
same lower bound holds for our set-up.

Next we state a result for (1.2) where the period rather
• than the energy is prescribed .

Theorem 1.4: Suppose U C 1 C P 2” , P )  and satisfies

• 
(H3) H(s) > 0 for all z

(114) 11(z) = o (1 z 1
2) at z 0,

(115) There is an i~ 0 and 0 c (04) such that
0 < H(s) < 0(z,H (z)) 2 for Iz l  ~
Then for any t ~ 0, (1.2) possesses a nonconstant r pen —

• odic solution.
At first glance, Theorems 1.3 and 1.4 appear to be

rather different results, but in fact Theorem 1.3 can be ob-

tained as a simple consequence of Theorem 1.4. Alternative-

ly, a direct proof can be given following the lines of our

solution procedure. The ideas that are used in the proof of

Theorem 1.4 work equally well if H depends explicitly on t

in a time per iodic  fash ion , i .e .  we have a forced ra ther  than
free vibration situation , and one seeks a solution of (1.2)

having the same period as the fo rc ing  term.
We suspect that a sharper conclusion obtains under the

hypotheses of Theorem 1 .4 , namely for a l l  t > 0, ( 1 .2)

possesses a nonconstant periodic solution with r as



1
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I

minimal period . To merely get a I periodic solution does
not require the full strength of the hyootheses of Theorem
1.4. In fact we have the following generalization of this
result:

Theorem 1.5: Suppose H ~ C
l (lR?n ,P.) and satisfies (115)

Then for any r , r > 0, there is a t periodic solution
z(t) of (1.2) having l i z i l > r.

L
• Simple examples show the period t need not be minimal

if we only assume (115). Theorem 1.4 is of course a conse-
quence of Theorem 1.5. However we prefer to aive separate
proofs of these results since the latter requires the intro-
duction of some additional topological machinery which can be
bypassed in proving Theorem 1.4 directly .

For comparison purposes, we conclude our list of theo-
rems by stating an analogue of Theorem 1.4 for a partial dif-
ferential equation . Consider the semilinear wave equation

ru t t
_ u  + f(u)=0 , O < x < n , t c ]R

(1.6) ( XX

~ u(0,t) = 0 = u(w ,t)

Theorem 1.7: Suppose f C 2 (]R ,1~.) and satisfies
f is strictly monotone increasing ,

f(r) = o(IrI) at r 0,

(f ) there are constants ~ > 0 and 0 c (0,~ ) such that
r — ‘F(n) = f f(s)ds < 0 r f(r) for r > r.
0

Then for any i which is a rational multiple of ii , (1.6)

possesses a nontrivial classical solution which is I peri-
odic in t.

The greater technicalities involved in working with
(1.6) required imposing more restrictions on the nonlinear-

ity f and on the period r than in Theorem 1.4. We do not

know whether (f1) or the rationality condition on t can

be eliminated . Likewise it is not known if there is an ana—
logue of Theorem 1.3 in this setting. The details of the

proof of Theorem 1.7 can be found in 12) and will not be fur-

ther discussed here.
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Our approach towards th. abov, results is by means of

• 
• the calculus of variations. We try to find solutions of (1.2)

or (1.6) as critical points of corresponding functionals. For

•xampl., in the context of Theorem 1.4 with i - 2u , we seek

critical points of the corresponding Lagrangian :

(1.8) f2’1 (p,~
) n 

— H(zfldt
0 P

while for (1.6) (and t — 21) the analogue of (1.8) is

(1.9) 1
21
1
T
1 (u~ — u~) — F (u)]dx dt

0 0

To treat the set up of Theorem 1.3 , we first make a c’~anqe

of time variable t • 2W t 1t A~~ t , where t is th. un-

known period ,so that (1.2) transforms to

(1.10) 1 — A 9H~

and the unknown period becomes 2”. Then working in the

class of 2W periodic functions , we search for cri tical
points of the action integral

(1.11) A(s) — J 2!( P c ?;) n dt
0 P

subject to th. constraint

(1.12) ~~~~
. J~
’H(s)dt — 1

0

Formally th. unknown period then app.ars in (1.10) via the

Lagrang. multiplier A .
As was mentioned at the b .ginning of this section , the

above functionals are indefinite. In particular , they are
neither bounded from above nor from below and th. quadratic
parts of (1.8) and (1.9) have infinite dimensional subspaces

on which they are positiv , and on which they are n.gative.
Thus obtaining critical points of (1.8), (1.9). or (1.11) —

(1.12) ii a subt l• matter and we do not know how to carry
this out in any direct fashion . An approximation procedure

is used instead . First th. functional is restricted to a
finite dimensional subspacs of (L2(S1))2~. Secondly a

ainimax araum nt is employed to obtain a critical value and

—4—
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correapondinq nontrivial critical poin t for the finite dimen-
sional problem. Thirdly the minimax characterization of the
critical value is used to obtain bounds for the critical value
and critical point.  Having sufficient estimates , we can use
standard arquments to oass to a limit to find a solution of

• (1.2) (or (1.6)). Lastly in the context of Theorems 1.4, 1.5,
or 1.7, an additional argument is required to be sure that the
solution obtained is nontrivi~ ’. shall give a detailed
illustration of this method in

There does not seem to have been much work of the nature
of the above theorems in the l!~terature. Our results,
Theorems 1.3 - 1.4 can be found in (31. Theorem 1.5 is new.
earlier Seifert (4) studied the Euler—Lagrange equations
corresponding to the Lagrangian 0 - U where Q(x,,~) —

I a~~ (x)~~1~~ is positive definite in ~~~, a1](x) and U(x)
are real analytic in a domain c c ~ n , U — E and U,~ * 0
on ~G, U < E in C, and C is homeomorphic to the unit
ball in P~ . Using qeodesic arcuments from differential
geometry, he showed that the Euler-Lagrancie eauations for
Q — U possess ~ tine periodic ~c1.~t ic~ with energy E. More
recently , in work done concurrently with our own, Weinstein
(5) extended Seifert’s arguments and results reolacing 0 - U
by H(p,q) — K (p,q) + U(q) where U is as above and K is
even and convex in p for fixed q. As an application , he
obtained a variant of Theorem 1.3 with (112) replaced by
the condition that H 1(l) bounds a convex region. Some
other results of a special nature have been obtained for re-

• • • lated problems by Berger (61, Gordon (71 , Clark (8),
Jacobowits (91, and Hartman 1101 . A considerable amount of

• work has also been carried out on bifurcatiam questions for
Hamiltonian systems. We refer tha reader to Berger (6),

• Weinstein (11, (111, Moser (12], Bottkol 113), Chow—Mallet—
• Paret (141 , and Padell-Rabinowits (15) for more information.

Theorem 1.4 will be proved in 12 using the procedure
outlined above. Then an elementary proof of Theorem 1.3 will
be carried out in 13 using Theorem 1.4. Lastly in 14 we
prove Theorem 1.5. To carry out our method here, we intro-
due, a topological index theory which was developed in (151
and which forms the basis for the minimax constructions used
for this theorem.

—5—
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12. Proof of Theorem 1.4

The proof of Thecrem 1.4 will be given in this section .
Observe tha t no upper bound is placed on the rate of growth
of It at infinity . This creates some technica l problems
which w get around by introducina a new Hainiltonian
which coincides with H for i i K and grows at a pre-
scribed rate at infinity . Let K . f and ~ C(P~ ,j~~ )
such that \ (s) — 1 if s K , \(s) — 0 if s K + 1. and
X ’(s) < 0 if * . (K , K + 1). Now set

• (2.1) — \ (  Is 1) 11 (z ) + (1 — 
~( kI) )~‘ I~ I ~

where 0 — c (K) satisfies

(2.2) p (K + l)~~ max 11(z )
—

Then C~ (P
2
~ • It) and satisfies (11 3

) - (114). Moreover
a calculation usIng (2.2) and (Hz) shows satisfies (H5)

with 0 replaced by t~ — max (t’,~-). Setting z - r w where

~ ~ ~
2n— 1, (H~) implies that

d l t K (r w)
(2.3) dx ~ r HK (r w)

for ~ i. On integration (2.3) gives

(2.4) HE(s) a1 I z I ° — a2

for all s s p25 where the positive constants a1, a2 are
independent of K.

The Hamiltonian system corresponding to HE is

(2.5) • 
~~~Kz

Instead of seeking r-p .riodic solutions of (1.2) or (2.5),

it is convenient to make the change of variables
t • 2! t ! t transforming (1.2) and (2.5) into

(2.6) ~~~. A IN

(2.7) — ~ 
~

11Ks

respectively. We seek 2! periodic solution s of (2.~~
) -

(2.7). Theorem 1.4 will be obtained with the aid of the

—6 -
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~K with

r .  
~~~~~~ .U~~ . K~~~~

!) • dt  It
0 — 

*~
_ I
~ — 1

t ~ t .~~ K.

r t .~~’ t t  r~~~’.’ 4 F~~: .t..’h K ‘ t’v Thi’.’ t 2 . 8 we

~ ~~~~~~~~~~~~ .u~~ s.’1 :.‘n .‘t ( 2. 7 (  . ~ t suf t i~’ to

~h’~ th~ t r.’t N u u f f ~~. t . ~n t l y 1.~:sii ’. II:~ j I K. Then

(I H (* ~~
‘ 

~~~.‘ K u.~t ‘. ~.f ~~~~ ( 2  . . i~h~’ f~ l 1¼ ~W % f l S 1
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• P4~

.‘: .t 11 1. E
It with “ , ~1t ’t ’ t ’u.i. ’nt .‘ K. ~~ n.j¶ — :~~( t )  i n  ~2 .  U~ • t t ~~ .’.:l t t t n .~, .in.i ustnu ~~~~~~ y t e l d~

( 2 . I f l  J H K
(x

N
l
~

t t  ~ It 1 •

~~~t i t t t.”t th’ (i ~ t lt .’nt.i n sy~ t~’m i .’. •)  • H ( s )

t t~pen.ient .‘ t t . ¼ . ’fl 5t ’*~~t1(’fl t l~ ~~~ 
( 2  . 12)

( 2 . 1~~t H K . z N~ 
. It 1 + It 3

• 
.~ n.1 t he 1 t’mm.~ n~w t ~‘ t I .‘w s f t ~ m ( 2 • 4 ‘ .i n.i ( 2 . 1

The p t .’.’ t ~‘ t ~~~~~~~~~~~~~~~~ .‘ . 0 w i i  n~’w 1’.’ .‘.i .‘~: t us I n.j

the p .‘.i ~~u ~~~~~~~ t .‘h.’5i n the I u t  ~‘.iu.’t t.’n . t\ ’ & ‘~~su n , set

(2.14) 1 — ~2~~( ( ~~~~~ 
n 

— ~ H K ( z ) ) d t
0

whet.’ : (t  — ~~~~ 
( t  “ .~ (t • Then I ( :~ ‘i s  .ief’i n ~i ~‘n r,

the I( 1 ~~~~
. t sp,t.’~’ .‘ t ‘ “i — t ‘ii:’ 1 i’~ t t 2 ”  :‘t’ ‘i .‘ t un. ’
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first .tez’iv~ tjves. i . e .  E • (W~~
2(S1 ) ) 2

~ under the asso-
ciated innet product . Formally a critical oint .~f I in

E is a weak sclution of (2.7).

The first step in our solution procedure is to approxi-

mate I on F by a finite dimensional problem . This i s

easily done here . Let •k’ I s k 2n denote the usual .r-

thonormal bases in F2~ , i.e. e 1 • (
~~, 0,..,0 ) ,  etc. Set

E •  span ( (sin i t ) e k .  (cos i t ) e k l O  .. .. m . l~ It .. 2n (

Now we simply consider I restricted to
Th. next step in our proarast is to obtain a nontrivia l

critical point for II  . The following len~ a supplies an
existence tool. ~~~ B~. — U F 

~~~ 
r). For It

let — (C ~ ~~~ I~ — 
~~1’

’”’’k’ 0,
...,0) and

• it~ It •

Lsmea 2.1St Let • s C1(& ,F) , It j .  and • F
such that •(~) ‘Ut) for all ~ t F~ . Suppose

‘V * 0 for all  ~ e

There is a constant ~ 0 such that • 0 in
(R ,~\(01) .~

(~ 3 ) There is a constant u “ 0 such that ~ .. 0 in

P l
Then • has a positive critical value b characterized by

(2.16) b • inf max •(hU~))h .r
where

r — (h C(J ~1k~~ It~) I h (C) • C if t(C) ‘ 0)

Proof t A proof of Iasmta 2.15 can be found in (21 or (16).

To apply Lesmia 2.15 to I~~ , identify I (under
4II •II 2~ 

with It-’ where j — 2n(2m + fl and take
L

• — ‘V • Il~~~. To verify the hypotheses of the lesria , we in-
troduce a convenient bases in E~ . Set

— 8—
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1 4

— (sin 
~
t)e k - (cos it )ek÷fl .O ~ ~ m • 1 ~ k ~ n

— (cos it )t
k 

+ (sin

— (sin Jt)e~ + (cos Jt)ek+fl

+ (cos jt)ek 
- (sin jt)ek+fl

and take E’ — span (
~~ k, ~jk

t
~ 

i 1 < k < n } ,

F = span (
~ It’ ~Jk

1
~ 

14 , 1 < It n), 
~m 

- 
~
‘i E~~ and

F° • spant ,~0~ . ‘
~
,
Ok 1 1 It < ni . Then Em

4
~
i F , F° are or-

thogonal subspaces of Em whose span i* E~ . Let

A (z) f2” (p,q) ~ dt
0 F

the action integral. It is easy to verify that A ‘ 0 on
A < 0 on £ \(0), and A • 0 on F° Choosincu

FIt 
- F° • F .  (Fk )t - £

m 
and - E0 • Em • span

V~~ it now follows from (113). (114). and (115
) re-

spectively that (-t’~ ) ,  
~~~~~ 

and (~ 3) are satisfied . Thus by
Leiim’ia 2.15 , I(

~ 
has a positive critical value bm with

corresponding crTtical point Z m •

The third step in our procedure is to use the minimax

characterization of bm to obtain bounds on be and Z .

Lenina 2.17: There are constants It4, It5 independent of m

and K and constants It6. M7 independent of m such that

for all m ‘ 1,

(2.18) be M4

(2.19) ~)
2W (z m~ 11Ez~~~m~~ 2~~dt < N5

(2.20) 
“~ m ’1 ~ ~- It

6L

~ 2 2 1/2
(2.21) ‘t~ m

11 E — ( IIz~ ~ 2 + C
L

2 
-c N7

Proof: Observe that h(s) z c r . Hence by (2.16),

(2.22) O < b
~~

< m a x l < m a x l
‘v~~~

’m 
V
~

—9—



—
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ __ —.~~~~ ‘.~~~~

--
~~•~~~~~~~~ ~~~~~~~~~~~~~~~ 

~~~~~~~~~~

where by (03
) max rather than suo can be used in the right

hand inequality . Any function a V~ can be expressed as

(2.23) aCt) = 11 z 11 2(c(t)cos u + (2n)’’~
’2
~ 11(t)sin w!

where c E~ • E 
—

, 

L2 
= 1, and w c (0,2”],. Choosing

z — z c V~ which maximizes II,,,, , (2.22) — (2.23) show that

(2.24) A f
21T

11 (~ )dt <

Using ( 2 . 4 )  and the Holder inequality to estimate the right
hand side of (2.24) yields

-— 1
(2.25) a3lIzIL, 

— a4 .~~. ~II~ ll 2,• L L

• for some constants a3, a4 independent of m and K. Since
~ 1 .0 < ~~

-, (2.25) provides a bound on liz II 2 independent of

in and K, say L

< 149 . 

•

Returning to (2.22), we f ind

(2.26) b < I(~ ) < ~~ M~ E 144

To verify (2.19), note first that since 
~~~is a critical point of I)~~ )

(2.27) 0 = I’ (z
~
)c 12”((Pm iP) n + m Fn

— C Kz(Zm)) 2n Jdt

for all ~ = (~~~~ s)  c Em where I’(C)c denotes the Frechet

derivative of I evaluated at ~ 
and acting on ~~~. Using

(2.2), (H5), and some simple estimates
, (2.27) with C

gives

(2.28) b
~ 

= [(am) 
— 

~~~ 
I’(Zm)Zm ~~.

cxf 2” (Z
~~,HKZ (Z C) )  2~~dt — a50 F

—10—
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where ~-. -
~ min(~ — t ’ , ~-) ~nd a~ is independent of m and

K. Thus (2.19) tollows from (2.28) and (2.18).

The dt’fini tion of and (2.19) yield (2.20).

L:stly ( 2 . 2 1 )  is eu .loyed again with C — 2 ~~ to  ob-
tain (2.21). By the  Schw~ r-.’ inequality,

(2.29) II z~ i t 2  
~ ~~~~Kz ’”~~ L2 a6(1 + IkmII 6 )

where a6 depends on K but not on in. Hence

(2.30) ‘1 F’ ~ Ik1~ ~ 2 ~ + 1k511 6 )

‘rho ~~.iq 1. ‘ i i i  d.-’— N ’ i  u-on heu- o inequ~t1. I ty  ( 17 )  tmp l ten that

( 2 . 3 1 )  I I Z ! 1 6 ‘ ‘~‘7 ilh ll F IIz Ii~~’

for .il 1 a E.  %(t ’n t ’o ~‘ombinin~i (2. 10~ — ( 2 . 3 1 )  and ( 2 .2 0 )
q ivos (2.21).

‘rho fourth step in our  nroof ~s to use th e u e  estimates
to -tot i sol Ut ion of ( 2 .  7)  . I i k’o~1 i t  now f ol 1ow~ from

2 . 2 1 )  , the -~ob.-’ 1. ’ v Imbedd (no Theo rem (1 7) , and ( 2  - 27) that
.u subsequence of in eonvou loM weakly In F and st rongly

in L to ~t i -out  inuous funt~t ion 5K ~~~~~~ ~ .it i sfy inq

(2.32) 0 f ((PK .l) + ~~~~~~ ~0 It

— ‘ ‘11Kz~~ K~~ It2~ 
)dt

for all r. • (-.~~,~~‘) U E. Thus 2K 
is a we.~k solution

- m~ t
of (2.7). Since P is dense in F, C. ’. ~2) implies (2.7)

holds a.e. But since HK (zK) Is continuous , so Is

and is .‘i .*‘i~ sicat ~otution of (2.7) . Note also (2.19)
imp l ies  t hat  satisfic~ (2.9).

The final s t o p  in the proof of Theorem 2 .8 is  to show
• that. 7K ~~ not a constant. The oonverqenoe alri’,’i.iy estab—

Ii shed for a i ni~ 1 ten that bm 
I (a 

~~ 
• ~ ~~~~ 

bIt .alon.j
some subsequence . S nco bm ‘ 0, bE ~ 0. 1! is a con-

stant , by (11 3).
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- AJ H K (Z K )dt  < 0

so bE - 0. The following lemma shows this is not possible
and consequently 5K ~S nonconstant.

Lemma 2.33: bE > 0.

Proof: A lower bound will be obtained for bE in terms of
a comparison problem. By (H4) and th~ definition of HE, for
any c ‘ 0. there is a constant A

~ 
> 0 and depending on K

such that

A 2n
(2.34) HE(s) .~. 

~~- 1z 1 2 
+ _

~~~

. J1 .
~~ C(s)

for all a c R2~ . Set

(2.35) J(a) — J
2W ((p 4) 

~ 
— A G ( s ) 3 d t

0 It

Then by (2.34)—(2.35), I(S) c J(z) for all a -( F. ‘raking
• 

a J~ • and ‘~ 
— . the form of (‘~ implies that hypoths—

(~~~~~ and (03) of ?~nvna 2.15 are satisfied here. Moreover
for e.g. c < ~-, the quadratic part of J is positive definite
on F5

4’ which implies that ~~~ also satisfies Hence
(2.16) defines a critical va1u~~ C

~~ 
of J such that

(2.36) 0 ‘ Cm < be

If We is a critical point of 
~

‘E 
corresponding to

c~ , then C

(2.37) Cm = J(w
~
) - 

~~
- J’ (w )w

1 2 2n
— 

~~

- A~ f “C 
~ w:4

)dt
0 i—I

The estimates of Lemma 2.17 and convergence arguments follow-
ing it apply to w~. Hence along a subsequence, W

e 
W

satisfying

— A 2 G5(w)

and c
~ 

-
~ J(w) C ) 0.

—12— 
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If b
E — 0, by (2.36), C = 3, and by (2.37), w 0.

Therefore We 
-. 0 in L . We will show that in tact thor.

is an Q > 0 such that IIw~Ii > c~. Dropping subscripts,
L

we set w — w + W where w i £0 and w t ~ + F. 
-
. From

— m in
(2.27) for .1’ with C — w , we have

(2.38) 2 1 t ( c l ~~l
2 

+ A~ 
2f 

~~)
i—i

— A~ 
2
}
~ 2~~~3 — w~)~~1dti—i 0

Hence

(2.39) 2n ~
i-I

2
— f j2n~~~

2 W + 3 + W3) dt
i—l 0

which together with the Holder inequality and some simple
estimates leads to

(2.40) I~ l < a8 flw~ •L

Another application of (2.27) for J’ with ~ - 2 ~ yiolis

(2.41) H~ lI 2
2 < 2 c 11w 11 22 + a9IIw II ’.,

L L
where 59 depends on c. Since W has mean value zero, it
is easy to show that

( 2 . 4 2 )  lI w il < (2n) 1~
2 II~ II 2L L

Combining (2.40) - (2.42) gives

(2.43) 11w 11 2,, ~ 9
2 t l lw lI 2,.. + 2ia9(l + a8)

611W 11 6,
L L

Since (2.43) is valid for all c (0,~-), we choose
- (16n 2)~~~. Then (2.43) provides a positive lower bound

for 11 W ~ and therefore for flw~lI indep.ndently of
L L

C.
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This completes the proof of Lemma 2.33 and of Theorem
2.8.

Remark 2.44: If H depends explicitly on t in a time
periodic fashion and sotisfies (H

3
) - (H

5), the argument of
Theorem 2.8 gives a nonconstant periodic solution of —

(2.45) = A p HKZ (t.z)

where HK (t,z) is defined in a similar fashion to (2.1).

However the argument of Lenuna 2.10 no longer suffices to

eliminate the K dependence and some further hypotheses on

H seem necessary . See (3].

§3. Proof of Theorem 1.3

In this section we will give an elementary proof of
Theorem 1.3 based on Theorem 1.4. To begin we replace H by

a more tractable Hamiltonian. The following lemma provides

a class of admissable replacements.

Lemma 3.1: Let H, ii c Cl (]R 2n , F) with H~~ (l) = 1V1 (l)

and H5, 
j],~ * 0 on H’~~(l). If C (t) satisfies

(3.2) — p

and C (O) € H~~ (l), then there is a reparametrization z(t)

of C (t) which satisfies (1.2). In particular if c (t ) is
periodic , so is 2(t).

Proof: Since H~~ (l), i%~~ (l) are level sets for H, ii re-

spectively, and H 1(1) — H 1(1), H5(z) — v(z)i~5(z) for all

a c H~~ (l) where 0 < v(z) E C(H~~ (l),]R) - Moreover since

(3.2) is a Hamiltonian system and C (0) c H~~ (1), ~ (t) lies

on H~~ (l) for all t c F. Setting z(t) C (r(t)) where

r(0) — 0 and r satisfies

dr(3.3) = v (C (r(t)))

it follows that a satisfies (1.2).

For the periodic case, a bit more care must be exercised

since the right hand side of (3.3) is merely continuous and

therefore the initia 1 value problem need not have a unique

solution. If C is ‘F—periodic , let ~ be the first oosi—

tive value of t such that r(t) = ‘F. Replace r by

—14— J
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s(t) — r(t), t io ,tj and 5(t) = jT + r(t—jE) for
t c (j~~,(j+l)tJ , j t ~~~~~. Then it is easy to verify that
s C~ (F,1R) anr~ z(t) = C(s(t)) has period t.
Proof of Theorem 1.3: It suffices to find a periodic solu-
tion of (3.2) for an appropriate choice of ii. As in U,
after a change of time variable , (3.2) becomes

(3.4) — A p

and we seek a 2n periodic solution of (3.4). To define ii,
let ~ , C1(H~~ (l), S

2r
~~~) be the mappina given by (H2).

For each 2 F2
~ \ { o) , there is a unique ~(z) c F and

w(z) ~ H~~ (l) such that a — ~w. Indeed w(z)
and cl(z) — I z i lw (z) 1 ’. Let 11(0) = 0 and ii(z) cz(z)4,
z # 0. Then ii c C’(F2

~ ,JR) and satisfies (H3) 
— (H~). In

particular by the homogeneity of ii, a - ~~
- in (H5) and

� 0 if  a * 0. Hence by Theorem 1.4 with -t — 2~ , (3.4)
(with A = 1) possesses a nonconstant 21u—periodic solution
u (t). Since (3.4) is a Hamiltonian system, 1i(u(t)) p, a
constant. It need not be the case that o = 1. However, by
the homogeneity of H, for any y * 0,

(3.5) (•~9;) = ~—2 
~ 

L15(yu)

and

(3.6) ii(yu) — •y~~p

Choosing y = p~~
”4, 11(yu) 1 and •yu is a 2n periodic

solution of (3.4) with A y 2. The proof is complete.

Remark 3.7: Using the proof of Theorem 2.8, it is not diffi-

cult to obtain upper and lower bounds for A and then via
Lemma 3.1 for the period of the solution of (1.2).

§4. Proof of Theorem 1.5

We follow the procedure used in 62, modifying it where

necessary. In particular by eliminating hypotheses (H3) 
-

(H4), Lemma 2.15 which provided the existence basis for

Theorem 1.4 is no longer applicable and a replacement is

needed. To get one , we exploit a group s t ructure inherent
in our problem which has not yet been employed.

— 1_ 5—
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Let z (t) c F. We can write

z(t) — ~~ eijt - ~(~ it)

where a. ~ and a — . Let (L z)(t) = z ( t+o )  for) i j 0 1o c (0,21T) . This family of translations induces an S

action on F given by (~ p)(~ it) = p (we~
t) for w ~ S~ . We

call mappings of F to F which commute with this action or

real valued functions on F which are constant along orbits

of the action equivariant maps and subsets V of E for

which L0:V 
-
~ V for all a c (0,2ii) are called invariant.

It is easy to verify that E
~
, Em

±
~ and F° are invariant

subspaces of E and 1(z) as defined in (2.14) is an equi—

variant map. Note also that E° is a fixed point set for
{L01o c (0,2itl } and there are isotropy subgroups .of the

action of a rb i t ra ry  order in S~~.
To take advantage of the above S~ action, we will use

a cohomology index theory developed in (15]. Let e denote
the family of invariant subsets of E\{O}.
Lemma 4.1: There is a mapping i:~ ~ 14 u (°‘), i.e. an in-
dex theory such that for all U, V c

10 If there is an f ~ C(U,V) where f is equivariant,
then i(U) < i(V).

2° i(U u V) < iCU) + i(V)

30 If U is closed , then there is a closed invariant neigh-
borhood V of U such that i(V) — i(U).

40 For a c E\E°, if S~z — CL z~a € (0,2w)), then
i(S1z) — 1. 

0 
-

5° If P is an invariant subapace of (E°)~ , the L2 or-
thogonal complement of £0, then i(F n ~) — ~~

- dim F where

~ is the unit sphere in F.

60 If U is contained in a finite dimensional subspace of

E, 1(U) < — if and only if U n £0 —

Proof: The definition of index and proofs of its properties
can be found in (131 .

-16—
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One further property of i ( s )  w i l l  be useful later .
I.envsa 4 . 2 :  I f  F c E  is an invariant subspace containing
~0~~~~ 

C
E , d i m F ’ 2 n ( m + k + 1 ) ,  and U g t w i t h  U c E ~ and
i(U) ‘ n(e - k) + 1, then F n U * •.
Proof: The invariance of F implies the same for F L 

~
Suppose F n U • •. Then P~ , the L2 orthogonal projector
of to F 1 n Em a belongs to C(U,(F1 n F

~
)\(O)) and Pm

is equivariant. Hence by 10 of Lemma 4 .1 ,

(4.3) 1 (U) < i(P
~
(U)) < i(U~) < i (* n F 1 n

where U~ denotes the radial projection of PC(U) to
n F 1 n E~~. Since d im — 2n(2a + 1) and dim F >

2n(m + k + 1), dint F-’ ~ -c 2n (m - k). Therefore by 5~ of
Lemma 4 . 1 ,

(4.4) i (~ n F n n(m — k)

But (4.3) - (4.4) are contrary to the hypothesis on i(U).
Hence F n U *

Now we can give a variant of Theorem 2.8.
Theorem 4.5: If H satisfies (H5), then for any K > F and

0. (2.7) possesses a 2~ periodic solution.
Remark 4.6: As in Theorem 2.8, it is not just existence but

also K independent estimates for the solution that are cru-
cial for the sequel. It is inconvenient to present thee at

this point and they will be stated in the course of the proof.
Th, notation of U will be used in what follows. As

earlier we begin by considering Il~~~. With the aid of the
above index theory and several ideas from (18], we will ob-
tain a family of critical values of this function. The def-
inition of H

~ 
implies that there are constants H and

the latter depending on K , such that

(4.7) Hx(z) < M + 
~MI~l4 b(s)

for all z tIt2~ . SInce H
~ 

satisfies (H5), there is an
depending on m and K such that for all R > 1,
I(s) < -2~~XM for a £m\BR. We choose any such P for now
and will subject it to one further restriction later. Set

V ek - £0 . S sP afl(~~1~~.*1~~I 1 < i k, 1 ( j n} .

— 17—
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Then V~~ is an ir.variant subspace of E
~
. Let

( 4 . 8 )  r — {h c C(E ,E )  fh is an equivariant homeomorphism

of onto and h(u) — u if 1(u) < - 2wXM }

The reason for normalizing h by the - 2wAM term will be-
come clearer later. Now define

( 4 . 9 )  c~~ — m t  _max I(h(u)) 1 < It < in -

h t r  u B  nV
H in R ink

Lemma 4.10: For any It ‘- in , c~~ is a critical value of

li E and

(4.11) c~~ 
-
~ — 2wAM

We postpone the Droof of Lemma 4.10 for now and complete
the
Proo f of Theorem 4.5: Since h(s) z r~, by (4.9),
(4.11), and (H5),

- 2ii AM < c~~~ < m4x I(s) .

zt V~~

Replacing (2.23) by

z(t) — l iz il 2(r~Ct .) cos ~ + F (t) sin w~L

where ~ and w are as earlier and t snan {#jj~~jjl
l < i < k ,  l j < n I with II~ I I 2 1

~ 
the oroof of Lemma

2.11 proceeds essentially unchanged with the factor of in

(2.24) — (2.26) replaced by It. Thus we obtain estimates for

It and W It . a correspond ing critical point , which are

independent of in:
(4.12) c~~ < H4

(4.13) f
2” W

k 
,HKz (%

~
1mk 

) )
R2n

dt < H5

( 4 . 1 4 )  Ilw~~ L4 
< H6

(4.15) IIW Ck Ii < M7

-18-
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where N4 
- N5 depend only on It and N

~ 
- N7 depend on It

and K. Now as in U, a subsequenc. of w~~ converges to a
func t ion wIt as in • — and W It satisfies (2.7).

Thus Theorem 4.5 is proved modulo L cma 4.10. Once
(4.11) has been established , the leiena is a consequenc, of
the following result. For c s P , let

a~ 
- (a e E

~ I•(z ) < c) and — (a 
~ 
E
~ I~~

(s) — c and

— 0).

Lemma 4.16: Suppose • ~ C
2(E~ ,P) is equlvariant , there

exists an P ~ 0 such that •(a) - 2 wl N for * e E
~
\B
~.

e 0, c > - 2nXM , and S Is any invariant neighborhood of
Then there is an P • (0,e) and n ~ C(I0,l) ~

such that

10 fl(s,.) is equivariarit for each s (0,1)

20 r~(s,.) is a hoineomorphiam of E
~ 

onto E~ for each

S t (0,1)

3° n (s,z )  — * if •(s) / (c— ~ ,c+~)

4~ n(l .a~~,~~\ 
) c ~~~

5
0 If — •, n ( l a c+e ) c

~~~~c_e

Proof: With the exception of 1°, the Lemma is a soecial case

of a standard result. Therefore we will only sketch the
proof indicating in the process why 10 is satisfied . More
details can be found in 1191 or (20) .

By making ~ smaller if necessary , we can assun*

( 4 . 1 7 )  1< (c + 2 w A M ) 4 1 
~

The assumption on P implies •~~~( 1 c-€ , c+~~1 ) c  B
~ 

which s

compact ( and therefore • trivially satisfies the PalMs-

Scale condition in Ba) .  Choose any E (0,~ ). The func-

tion n is determined as the solut ion of an ord inar y d i f fe r-
•ntial equation:

( 4 . 1 8 )  — V(n) , n (0,*) — *

for a E~~.__
To define V. let A - Q4,..~ u (E

~\c~~
) and

B — n (Ee\ac...e) .  Note that these sets are invariant and

-19-
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therefore q ( z )  — li z—A l l 2 ( l t a — A l I  2 ~ liz — B it 2~ 
is an

L 5’ L L
equivariant funct ion where l iz-A l l  , denotes the distance

(tn E
~

) f ront 2 to  A. Observe that g ~ 0 on A and

g 1 on B . S i m i l a r l y  for  ~ s u i t a b ly smal l  — see (191 or
( 2 0 )  to make t h i s  precise - we can define a L i p a c h i ta  contin-
uous e q u i var i a n t  f u n c t i o n  f such that f 0 on
{ z  e m c

L
2 
~ a~’ f = ~ on (-z Fm H t Z _ ~(c li 2 -~ - ~~~~

and 0 ~ f ~ 1. Next define ~ :P ~ by i(s) — 1 if

S • 10 , 1! and *(a) — s~~ if 5 ‘ 1. Finally set V ( z )  —

— f(z)q(z)-.~i~ f~~’ (z) i~ ~~~~~~~~ 
for a e F

~
. Then by construc—

L
t ion V is u n i f o r m l y bounded , loca l ly  L i psc h i t z  continuous,
and equivariant on E~~. It follows that the solution n(s,a)

of (4.18) exists for all a P and satisfies 10. The semi—
group property for (4.18) gives 2° and the definition of g

- - 0 0 -0imp lies 3 - Las tly 4 — .~ fol low as in (191 or (201.

Assuming (4.11) for now , we give the

Proo f of Lemma 4.10: Assume first that H e C2 and there-

I C2(E~~P) and that in (4.8), I is replaced by any

function ‘r where t~
f(z) - I(z)i ~ on E~~i ~i being de—

f ined in ( 4 . 1 7 ) .  If Cmk is not a cr i t ical  value of
we can invoke Lemma 4 .16 wi th  ~ ~~. c — c~~ . and ~ —

Choose h ~ such that

(4.19) max I(h(u)) ‘ c~~ + ~
ucLsRnVfl~

By 10 - 2° of Lemma 4.16, i (l,h) is an equivariant homeo-

morphism of onto E
~
. Moreover if ‘i(s) < - 211)IM,

h (s )  — z and 3° of Lemma 4.16 shows n (1 ,h(z)) — * pro-

vided that I(s) / (c~~ -
~~~~~~ , c,~ +~~1. This is certainly

satisfied since by our choice of ~‘
; i ( s )  < - 2n\M implies

that - 2ii\M - ( I ( s )  ~ - 2ii \M + ‘- c~~ - r . Hence
n ( 1 , h) r~~. Consequently

(4.20) max I(~~(l ,h(u))) ~ c ItUJR
flVCk 

— flt

But (4.19) and 5~ of Lemma 4.16 imply that

max I(n(1 ,h(u))) < c~~ 
—
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contrary to (4.20). Hence c~~ is a critical value of
Il E~

Now suppose H is merely C1. Let H
1 

denote a se-
quence of C2 functions which converge to H on in
~ 2n uniformly in the C1 norm. Set

MEl
( s )  x ( I a l ) H 1(*) + (1 — x ( ls l 1)~ (EH z ! 4

for 5~~~~~2n and

2w
— J ((p,q) 

~ 
— \HE4 (a)ldt-, 0 P

for * ~ E. Then the functions Ij i; 
satisfy the hypothe-

sea of Lemma 4.16 for all sufficiently larqe and converge
to ~~~ in L~ uniformly in C~ . For such large j. de-

fine c~~ by (4.9) with I replaced by I but r de-
pending on I. Then c~~ exceeds - 2 w~ M since H~ is
close to H. Hence by the case just treated with ‘I’ - I .

c~~ is a critical value of ~ t E~ 
with corresponding criti-

cal point u~~. The definition of R implies u~~
Hence the coutoactness of ~ and convergence of I to

Il~~ imply that along some subsequence u~~ 
-. w~~ an~

c~~ - I (u ~~~) -. 1(w~~) with w~~ a critical point of I I~~~.
Moreover I(w~~) - c~~ as defined in (4.9).

It remains to prove (4.11). This estimate and more
follow f rom a comparison argument. First we define

(4.21) -. (S 
~ 

E
~~~I S is compact , invariant , and

S n h(~~ n V~~) 0 • for a l l  h • r
~
)

Lmma 4.22: * •. Indeed if S c A is compact,
invariant , and satisfies i(s) n (m-k) + 1 , then S • r~~.

Proof: Note first that such sets S exist since
U $ n ~~~~ - inn via 5° of Lemma 4 .1 .  Let h • T~~. Since
h ( *)  - * for a j 

~~ 
h~~ (S) c 

~~~ 
Therefore

S n h(~~ n V~~~) * • is equivalent to h 1 (S) A * •.

Since h is a homeomorphisin, I(S) - i (h~~~(S))  by 10 of

—21 —
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Lemma 4.1. Moreover dim V~~ - 2n (m + It + 1 ) .  Hence by
Lemma 4.2, h~~ (S) n V~~ * $ and S r~~.

Mother set of numbers can now be defined as follows :
*(4.23) c — sup mm 1(u) It in

sermk u S

*Lemma 4.24: c - c
-— ink ink

Proof: For each S and each h r~, there exists a

~ ( S n h(~~ n V~~). Therefore

max l ~~I(~ ) ~~min I
h(BpnVmk

) S

from which it follows that c~~ -.- c~~~.

To prove equality , observe that for each h there is a

* ç n V~~ such that

I(h(ch)) — max I (h(u) )
ut
~~R

nVnth

L.t S — (h(s
~~h

h ~ r }  where the notation of 4° of Lemma
4.l.is being employed . Then by construction , S ~ r~~ and

m i n I > c ~~S

so we have equality.
The definition of c~~ makes it more amenable to lower

bounds than c~~~. While it is possible to obtain such bounds
directly, it is convenient to introduce one more comparison
problem. Recall the definition of 3(z) in (4.7) . Set

(4.25) •(z) f
2Ir

f (p,~~) 
~ 

— Aã- (z)Jdt
0 P

— — 

~
AM Iz

4 dt 2~ XM

Thus is the origin of the mysterious term - 2wXM in the

definit ion of rm . Equation (4.7) implies that

(4.26) •(z) < I ( s )

for’ all * • E. Therefore

-22— 
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(4.27) ‘rnk > b~~ suo mm •(u)
s e r ~k ueS

Thus to prove (4.11), it suffices to find an aporopriate
lower bound for b~~. To do this one final set of prelim-
inaries is needed. Any z can be written as

z 1L~ 
+ Bi j I

~
I i j

There fore

(4.28) A(s) — j . I ~ i( Ia~.l 2 
+ I8~~l2 )

j~~l i~ 1

It follows that  A ( z ) ~~”2 is a ( H u bert space) norm o n E 1’.
Indeed the c]osure y of E with resoect to A ( s ) is a
subspace of the fractional Sobolev space

Lemma 4.29: For all z ~ Y and r c (2 ,a), there is a con-
stant 

~~ 
depending only on r such that

(4.30) fl t r -~- 
wrMZ)

”2 ,
L

i.e. Y is continuously imbedded j fl (L~)
2”. Moreover the

• imbedding is compact.

Proof: The first assertion is a special case of standard re-

sults on Fourier series. See e.g. the main theorem on inte-
grals of fractional order in (21). To prove the comDactness,
observe that (4.30) and the Schwarz inequality imply

(4.31) 
~~~~~ 

1w r Il Z I I ~2 A(z)~~~
The standard proof of the Rellich lemma - see e .g.  (22 , p.

169J - implies that Y is compactly embedded in (L2)2” .
Therefore if a — 0 in Y (- denoting weak convergence),
5
) 

-. 0 in II• I~~2 and since ~~ 
•
~~~ bounded in Y, - 0

in 
~~~~~~ ~ 

via (4.31). Hence the imbedding is compact.
L

Now let D~~ span (.omj .V~~
Ik < i < in , 1 < j < ni and

— U where the closure is taken in Y. By Lemma
m”k

4.29 , we have
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(4.32) tI z il 
~ 

< d~ A(z)
112

for all a e where

U
4 

> dk — supC(~z~j 4 1z c and A(z) = 1) .

L

Moreover by compactness assertion of Lemma 4.29, there is

* Dk such that A(
~k
) = 1 and ‘i

~~
k l!

L4 
= dk > 0.

Lemma 4.33: dk 
-.. 0 monotonically as k + ~~~.

Proof: The definition of dk implies that dk+l ~~. 
d~. The

definition of Dk implies ~~ — 0 in Y and hence

= lIck 11 
~ 

i- 0 by Lemma 4.29.
L

The proof of (4.11) is now completed by combining

Lemma 4.24, (4.27), and the following

Lemma 4.34: b~~ > - 2irXM

Proof: Let S~~ = {z £ D~~ lA(z) 
= p

2}. By (4.25) and (4.32)

we have

(4.35) •(z) > p2 — AAM4P
4 — 2irAM

for all z E S~~ . Choosing 0k — ( 2XAM4)
”2 leads to

(4.36) •(z) > 
~
. p~ — 2w~M.

Making R — R(m,K) suff iciently large insures that
c BR. Since S~~ is radially homeomorphic to the unit

ball in D k’ i(S ) — n(m-k+1) > n(m-k) + 1 by 10 and

of Lemma 4.1. Therefore Lemma 4.22 shows s_~ r~~. Last-

ly (4.27) and (4.36) imply b~~ ~ 
p
~ - .2s).M and the proof

is complete.
Now finally we can give the

Proof of Theorem 1.5: Fix k. For this prescribed value of

k and all in, by Lemma 4.10, c~~ is a critical value of

with a corresponding critical point w~~. Moreover

(4.12) and (4.13) provide estimates for c~~ and w~~ de—

pending on k but independent of in and K. Hence on

—24—

~

- . - - 
‘—-—----

~~~~~~~ ~~~~~~~



— 

~~~~~~—‘ ~~~~~~~~~~~ 
‘•

~~~~-
~~~~~~~~~~~~~~~~

--
~~~~
-

~~~~~ -- - - 
_ ‘____75’__ --—i-, - -~~~ 

________ 
—

passing to a limit in m along an appropriate subsequence we
• get a solution wIt of (2.7) satisfyinq

(4.37) I(wk) Ck 1 114

(4.38) f
0

2
~
’(W k~

HKz (wk))~~2n dt ~ 115

The estimate of Lemma 2.10 then shows liw It li < M9 with 119
depending on It but not K. Hence choosing K M9, we can
assume W It satisfies (2.6).

To complete the proof, it suffices to show that for k
sufficiently large, liw It il ‘ ~~. If this is not the case,

L
f ix K at e.g. i~. By (2.6), for all It c )l we then have

(4.39) lI~k IL~ > Il H z(wk)II 
L

and therefore

(4.40) Ck I(wk) ~

where ~ depends on max (~H(zH , ~U5(z)fl ~z l  c ~} but not
on It or K. Since along an aporopriate subsequence
C It + c~ , then for any fixed It and large in,

(4.41) c~~ < + I

But by Lemma 4.24, (4.27), and (4.36),

(4.42) c~~ > mm • > ~~
- p~ — 2nAM — -~~ — 2itAM

s~~ 4AA Mdk

Since A11 depends only on K which is fixed and dIt 0 as
It -. — by Lemma 4.33 , we can violate (4.41) by choosing It
large enough in (4.42). This contradiction comoletes the
proof.
Remark 4 . 4 3 :  It is not difficult to show that

I(s) 5
2 w ((0,4) — XHK(z))dt

satisfies the Palais-Smale condition in B or in
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(W7 (51) ) 2n

• This suggests that  a direct i n f i n i t e  dimen—
sional minimax characterization of critic 31 values of I may

be possible . The difficulty of course lies in finding an

appropriate class of sets to work with .
Remark 4.44: (115) implies that for each b sufficiently
large, H 1(b) is radially homeomorphic to S2~~

’1 and

* 0 on H~~ (b). Therefore by Theorem 1 3 , there is a
periodic solution of (1.2) on this surface. If one could

establish better estimates for its period than we have been
able to, this approach may provide a simpler proof of Theorem
1.5 than the one just given.
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